Structural role of Sfi1p–centrin filaments in budding yeast spindle pole body duplication

نویسندگان

  • Sam Li
  • Alan M. Sandercock
  • Paul Conduit
  • Carol V. Robinson
  • Roger L. Williams
  • John V. Kilmartin
چکیده

Centrins are calmodulin-like proteins present in centrosomes and yeast spindle pole bodies (SPBs) and have essential functions in their duplication. The Saccharomyces cerevisiae centrin, Cdc31p, binds Sfi1p on multiple conserved repeats; both proteins localize to the SPB half-bridge, where the new SPB is assembled. The crystal structures of Sfi1p-centrin complexes containing several repeats show Sfi1p as an alpha helix with centrins wrapped around each repeat and similar centrin-centrin contacts between each repeat. Electron microscopy (EM) shadowing of an Sfi1p-centrin complex with 15 Sfi1 repeats and 15 centrins bound showed filaments 60 nm long, compatible with all the Sfi1 repeats as a continuous alpha helix. Immuno-EM localization of the Sfi1p N and C termini showed Sfi1p-centrin filaments spanning the length of the half-bridge with the Sfi1p N terminus at the SPB. This suggests a model for SPB duplication where the half-bridge doubles in length by association of the Sfi1p C termini, thereby providing a new Sfi1p N terminus to initiate SPB assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication

Centrins are calmodulin-like proteins present in microtubule-organizing centers. The Saccharomyces cerevisiae centrin, Cdc31p, was functionally tagged with a single Z domain of protein A, and used in pull-down experiments to isolate Cdc31p-binding proteins. One of these, Sfi1p, localizes to the half-bridge of the spindle pole body (SPB), where Cdc31p is also localized. Temperature-sensitive mut...

متن کامل

An Sfi1p-like centrin-binding protein mediates centrin-based Ca2+ -dependent contractility in Paramecium tetraurelia.

The previous characterization and structural analyses of Sfi1p, a Saccharomyces cerevisiae centrin-binding protein essential for spindle pole body duplication, have suggested molecular models to account for centrin-mediated, Ca2+-dependent contractility processes (S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams, and J. V. Kilmartin, J. Cell Biol. 173:867-877, 2006). Such pro...

متن کامل

Identification and localization of a novel, cytoskeletal, centrosome- associated protein in PtK2 cells

Antisera raised against centrin (Salisbury, J.L., A.T. Baron, B. Surek, and M. Melkonian. 1984. J. Cell Biol. 99:962-970) have been used, here, to identify a centrosome-associated protein with an Mr of 165,000. Immunocytochemistry indicates that this protein is a component of pericentriolar satellites, basal feet, and pericentriolar matrix of interphase cells. These components of pericentriolar...

متن کامل

Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast

Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed ...

متن کامل

N-terminal regions of Mps1 kinase determine functional bifurcation

Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2006